82 research outputs found

    Game analysis of the knowledge sharing mechanism for the supply chain collaborative innovation

    Get PDF
    Purpose: In information economy era, innovation is the key to improve the competitiveness of enterprises. The traditional way of enterprise innovation is outdated and supply chain collaborative innovation has becoming popular. This paper aims to analyze the mechanism of knowledge sharing between enterprises in supply chain collaborative innovation. Design/methodology/approach: This paper analyzes the supply chain members’ willingness to share knowledge by using the game theory. The result of knowledge sharing between two companies is analyzed by using the evolutionary game. Findings: We broke the knowledge sharing process in supply chain collaborative innovation into knowledge mining and knowledge transferring. We got the best knowledge sharing strategy of each supply chain member. We gave the influencing factors of knowledge sharing between members for the knowledge sharing mechanisms in supply chain collaborative innovation. Research limitations/implications: We didn’t study the willingness of more than two supply chain members to share knowledge and the result of knowledge sharing between them. And this situation is more realistic. Practical implications: Our findings can help to improve the effect of knowledge sharing in supply chain collaborative innovation.Originality/value: The paper introduces the game theory to knowledge sharing between members in supply chain collaborative innovation, deepens the understanding of knowledge sharing in supply chain collaborative innovation, and gives some interesting findings.Peer Reviewe

    Study on the effect of mineral admixtures on working and mechanical properties of the grouting material

    Get PDF
    Aiming at the existing grouting material, there are a series of problems such as poor fluidity of the grouting, rapid loss of fluidity, non-compactness of the grouting after hardening, gaps or holes, and the like. In this paper, fly ash, limestone powder, and silica fume are used to replace cement, and the influence of mineral admixtures on the fluidity, rheological properties, and strength of the grouting material are systematically studied. The experiment found that: fly ash, limestone powder, and silica fume can all improve the fluidity of the grouting material, and the effect of fly ash is the best. Compared with pure cement grouting, the initial fluidity and 60 min fluidity of the grouting material mixed with 40 wt% fly ash were reduced by 35.5% and 53.8% respectively. Fly ash and limestone powder mixed into the grouting material will significantly improve the rheological properties, while silica fume will reduce the flow properties of the grouting. The addition of fly ash and limestone powder will reduce the mechanical properties of the grouting material, while silica fume can improve the mechanical properties of the grouting material. Compared with pure cement grouting, the 28 days compressive strength with 4 wt% limestone powder grouting material is reduced by 4.5%, and the flexural strength is reduced by 6%; the 28 days compressive strength with 4 wt% silica fume grouting material is increased by 6.5%, the flexural strength increased by 1%

    An enhanced CRISPR repressor for targeted mammalian gene regulation.

    Get PDF
    The RNA-guided endonuclease Cas9 can be converted into a programmable transcriptional repressor, but inefficiencies in target-gene silencing have limited its utility. Here we describe an improved Cas9 repressor based on the C-terminal fusion of a rationally designed bipartite repressor domain, KRAB-MeCP2, to nuclease-dead Cas9. We demonstrate the system's superiority in silencing coding and noncoding genes, simultaneously repressing a series of target genes, improving the results of single and dual guide RNA library screens, and enabling new architectures of synthetic genetic circuits

    Enabling multiplexed testing of pooled donor cells through whole-genome sequencing

    Get PDF
    We describe a method that enables the multiplex screening of a pool of many different donor cell lines. Our method accurately predicts each donor proportion from the pool without requiring the use of unique DNA barcodes as markers of donor identity. Instead, we take advantage of common single nucleotide polymorphisms, whole-genome sequencing, and an algorithm to calculate the proportions from the sequencing data. By testing using simulated and real data, we showed that our method robustly predicts the individual proportions from a mixed-pool of numerous donors, thus enabling the multiplexed testing of diverse donor cells en masse.National Human Genome Research Institute (U.S.) (Grant RM1HG008525)Robert Wood Johnson Foundation (Grant 74178

    Effects of alkaline mineral complex supplementation on production performance, serum variables, and liver transcriptome in calves

    Get PDF
    Calf diarrhea causes huge economic losses to livestock due to its high incidence and mortality rates. Alkaline mineral complex water is an alkaline solution containing silicon, sodium, potassium, zinc, and germanium, and has biological benefits and therapeutic effects. This study aimed to evaluate the impact of alkaline mineral complex water supplementation on the health of calves and to investigate the effect of Alkaline mineral complex water supplementation on neonatal calf serum variables and the liver transcriptome. Sixty Holstein calves (age 1.88 ± 0.85 days, weight 36.63 ± 3.34 kg) were selected and randomly divided into two groups: the T group (treatment group with alkaline mineral complex water supplemented during the experiment) and C group (control group without alkaline mineral complex water supplementation). Alkaline mineral complex water supplementation significantly increased the body weight for calves aged 60 d and average daily gain during the experimental period (1–60 d). In addition, Alkaline mineral complex water supplementation could significantly decrease the diarrhea rate for calves aged 16–30 d, enhance the T-AOC, IgG, IGF-1, and IGFBP-2 in concentrations. The results of KEGG enrichment analysis in transcriptomics indicate that Alkaline mineral complex water supplementation inhibited the target IL-1B gene of the NF-kappa B signaling pathway of liver. Alkaline mineral complex water supplementation decreased calf diarrhea and improved partial immune function, anti-inflammatory activity, antioxidant capacity, and health of calves. Alkaline mineral complex is a candidate to replace medicated feed additives. Alkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex water

    Medium chain fatty acid supplementation improves animal metabolic and immune status during the transition period: A study on dairy cattle

    Get PDF
    The transition period is the stage of the high incidence of metabolic and infectious diseases in dairy cows. Improving transition dairy cows’ health is crucial for the industry. This study aimed to determine the effects of dietary supplementation medium-chain fatty acids (MCFAs) on immune function, metabolic status, performance of transition dairy cows. Twenty multiparous Holstein cows randomly assigned to two treatments at 35 d before calving. 1) CON (fed the basal 2) MCFA treatment (basal diet was supplemented at an additional 20 g MCFAs mixture every day) until 70 d after calving. The results showed that the serum amyloid A myeloperoxidase concentrations in the blood of cows in MCFA treatment significantly decreased during the early lactation (from 1 d to 28 d after calving) 0.03, 0.04, respectively) compared with the CON, while the tumor necrosis factor concentration was significantly decreased at 56 d after calving (P = 0.02). In addition, the concentration of insulin in the pre-calving (from 21 d before calving to calving) blood of cows in MCFA treatment was significantly decreased (P = 0.04), and concentration of triglyceride also showed a downward trend at 28 d after calving 0.07). Meanwhile, MCFAs supplementation significantly decreased the concentrations of lithocholic acid, hyodeoxycholic acid, and hyocholic acid in the blood at 1 d calving (P = 0.02, < 0.01, < 0.01, respectively), and the level of hyocholic acid taurocholic acid concentrations (P < 0.01, = 0.01, respectively) decreased dramatically at 14 d after calving. However, compared with the CON, the pre-calving dry matter intake and the early lactation milk yield in MCFA treatment were significantly decreased (P = 0.05, 0.02, respectively). In conclusion, MCFAs supplementation transition diet could improve the immune function and metabolic status of dairy cows, and the health of transition cows might be beneficial from the endocrine status

    Mechanistic Roles of Resection Nucleases and DNA Polymerases during Mitotic Recombination in Saccharomyces cerevisiae

    No full text
    <p>Every living cell faces a multitude of DNA threats in its lifetime because damage to DNA is intrinsic to life itself. A double-strand break (DSB) is the most cytotoxic type of DNA damage and is a potent inducer of chromosomal aberrations. Defects in DSB repair are a major driver of tumorigenesis and are associated with numerous developmental, neurological and immunological disorders. To counteract the deleterious effects of DSBs, organisms have evolved a homologous repair (HR) mechanism that is highly precise. The key to its error-free nature lies in its use of a homologous template in restoring the DSB and its preferential occurrence during late S and G2 phase of the cell cycle when identical sister chromatids are available as templates for repair. However, HR can also engage homologous chromosomes and ectopic substrates that share homology, resulting in mitotic loss-of-heterozygosity (LOH) and unwanted chromosomal aberrations. In this case, understanding of the underlying mechanisms and molecular factors that influence accurate sequence transfer and exchange between two homologous substrates becomes crucial. </p><p>The focus of this dissertation is examination of the genetic factors and molecular processes occurring at early intermediate steps (DNA end resection and DNA synthesis) of mitotic recombination in Saccharomyces cerevisiae. To model DSB repair, we established a unique plasmid-based assay with a small 8-base pair (bp) gap in the middle of an 800-bp plasmid substrate. To delineate the molecular structures of strand exchange intermediates during HR, we used a 2% diverged plasmid substrate relative to a chromosomal repair template to generate mismatch-containing heteroduplex DNA (hetDNA) intermediates. The assay was performed in a mismatch repair (MMR)-defective background allowing hetDNA to persist and to segregate into daughter cells at the next round of replication. Unexpectedly, even when MMR was inactivated, sequence analysis of the recombinants revealed patches of gene conversion and restoration reflecting mismatch correction within hetDNA tracts. We showed that, in this system, MMR and nucleotide excision repair (NER) correct mismatches via two different mechanisms. While mispairing of nucleotides triggers MMR, NER is recruited by the subtle 6-methyladenine mark on the plasmid substrate, leading to coincident correction of mismatches. The methylation marks on the plasmid were acquired from the bacterial host’s native restriction-modification system during plasmid propagation. </p><p>Formation of hetDNA occurs when a plasmid substrate engages the chromosomal template for repair, forming a D-loop intermediate. D-loop extension requires DNA synthesis by DNA polymerase/s. Translesion synthesis (TLS) polymerases have been implicated in HR in both chicken DT40 cells and fruit fly, but not in yeast. This class of polymerases is known for its low fidelity due to a lack of exonuclease domain and is commonly used for lesion bypass and in extending ends with mismatches. We reported for the first time a requirement of Polζ-Rev1 and Polη (TLS polymerases in S. cerevisiae) for completing gap repair. Moreover, gap-repair efficiency suggested that these two polymerases function independently. We concluded that TLS polymerases are involved in either extending the invading 3’ end and/or in the gap-filling process that completes recombination. </p><p>DNA resection of a DSB serves as a primary step to generate a 3’ single-stranded DNA (ssDNA) for subsequent homologous template invasion, but this process has mostly been studied in the absence of a repair template or when downstream HR steps are disabled. To analyze the individual contributions of identified nucleases to DSB resection in the context of repair, we established a chromosomal assay; the substrate size was increased to 4 kilobases (kb) and 85 SNPs were present at ~50 bp intervals. In this chromosomal assay, resection and DNA synthesis influence the length of hetDNA tracts in the final recombinants, allowing these two steps to be analyzed. We specifically focused on synthesis-dependent strand annealing (SDSA) events, where hetDNA reflects DNA synthesis and extent of resection. Our main conclusions are as follows. DNA end resection on the annealing end of NCO products generated by SDSA is not as extensive as one might expect from resection measured in single-strand annealing (SSA) assays. In addition, although the two long-range resection pathways (Sgs1-Dna2 and Exo1) can support recombination in a redundant manner, hetDNA was significantly reduced upon loss of either. End processing of DSBs is predominantly 5’ to 3’, but we also observed loss of sequences (greater than 8 nt but less than 40 nt) at the 3’ termini. We have tested and ruled out the involvement of Mre11 and Polε proofreading activity. Lastly, Pol32 functions as a subunit of Polδ to promote extensive repair synthesis during SDSA. hetDNA tract lengths were significantly shorter in the absence of the Pol32 subunit of Polδ, providing direct evidence that Polδ extends the invading end during HR. Together, this work advances our understanding of how resection nucleases and DNA polymerase/s function to regulate mitotic recombination outcome and influence the molecular patterns of NCOs.</p>Dissertatio

    Student Perspective: essay by Xiaoge Guo on cancer treatment

    No full text
    Brief opinion piece on chemotherapy
    • …
    corecore